3.263 \(\int \frac{x^{5/2} (A+B x^2)}{(b x^2+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac{x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (A c+b B) \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right ),\frac{1}{2}\right )}{2 b^{5/4} c^{5/4} \sqrt{b x^2+c x^4}}-\frac{x^{3/2} (b B-A c)}{b c \sqrt{b x^2+c x^4}} \]

[Out]

-(((b*B - A*c)*x^(3/2))/(b*c*Sqrt[b*x^2 + c*x^4])) + ((b*B + A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sq
rt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(2*b^(5/4)*c^(5/4)*Sqrt[b*x^2 + c*x
^4])

________________________________________________________________________________________

Rubi [A]  time = 0.220644, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2037, 2032, 329, 220} \[ \frac{x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} (A c+b B) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{2 b^{5/4} c^{5/4} \sqrt{b x^2+c x^4}}-\frac{x^{3/2} (b B-A c)}{b c \sqrt{b x^2+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(x^(5/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]

[Out]

-(((b*B - A*c)*x^(3/2))/(b*c*Sqrt[b*x^2 + c*x^4])) + ((b*B + A*c)*x*(Sqrt[b] + Sqrt[c]*x)*Sqrt[(b + c*x^2)/(Sq
rt[b] + Sqrt[c]*x)^2]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[x])/b^(1/4)], 1/2])/(2*b^(5/4)*c^(5/4)*Sqrt[b*x^2 + c*x
^4])

Rule 2037

Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> -Si
mp[(e^(j - 1)*(b*c - a*d)*(e*x)^(m - j + 1)*(a*x^j + b*x^(j + n))^(p + 1))/(a*b*n*(p + 1)), x] - Dist[(e^j*(a*
d*(m + j*p + 1) - b*c*(m + n + p*(j + n) + 1)))/(a*b*n*(p + 1)), Int[(e*x)^(m - j)*(a*x^j + b*x^(j + n))^(p +
1), x], x] /; FreeQ[{a, b, c, d, e, j, m, n}, x] && EqQ[jn, j + n] &&  !IntegerQ[p] && NeQ[b*c - a*d, 0] && Lt
Q[p, -1] && GtQ[j, 0] && LeQ[j, m] && (GtQ[e, 0] || IntegerQ[j])

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{x^{5/2} \left (A+B x^2\right )}{\left (b x^2+c x^4\right )^{3/2}} \, dx &=-\frac{(b B-A c) x^{3/2}}{b c \sqrt{b x^2+c x^4}}+\frac{(b B+A c) \int \frac{\sqrt{x}}{\sqrt{b x^2+c x^4}} \, dx}{2 b c}\\ &=-\frac{(b B-A c) x^{3/2}}{b c \sqrt{b x^2+c x^4}}+\frac{\left ((b B+A c) x \sqrt{b+c x^2}\right ) \int \frac{1}{\sqrt{x} \sqrt{b+c x^2}} \, dx}{2 b c \sqrt{b x^2+c x^4}}\\ &=-\frac{(b B-A c) x^{3/2}}{b c \sqrt{b x^2+c x^4}}+\frac{\left ((b B+A c) x \sqrt{b+c x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+c x^4}} \, dx,x,\sqrt{x}\right )}{b c \sqrt{b x^2+c x^4}}\\ &=-\frac{(b B-A c) x^{3/2}}{b c \sqrt{b x^2+c x^4}}+\frac{(b B+A c) x \left (\sqrt{b}+\sqrt{c} x\right ) \sqrt{\frac{b+c x^2}{\left (\sqrt{b}+\sqrt{c} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )|\frac{1}{2}\right )}{2 b^{5/4} c^{5/4} \sqrt{b x^2+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0596482, size = 76, normalized size = 0.55 \[ \frac{x^{3/2} \left (\sqrt{\frac{c x^2}{b}+1} (A c+b B) \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{c x^2}{b}\right )+A c-b B\right )}{b c \sqrt{x^2 \left (b+c x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^(5/2)*(A + B*x^2))/(b*x^2 + c*x^4)^(3/2),x]

[Out]

(x^(3/2)*(-(b*B) + A*c + (b*B + A*c)*Sqrt[1 + (c*x^2)/b]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^2)/b)]))/(b*c
*Sqrt[x^2*(b + c*x^2)])

________________________________________________________________________________________

Maple [A]  time = 0.019, size = 222, normalized size = 1.6 \begin{align*}{\frac{c{x}^{2}+b}{2\,b{c}^{2}}{x}^{{\frac{5}{2}}} \left ( A\sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{2}\sqrt{{ \left ( -cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{-{cx{\frac{1}{\sqrt{-bc}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-bc}c+B\sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{2}\sqrt{{ \left ( -cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}}\sqrt{-{cx{\frac{1}{\sqrt{-bc}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( cx+\sqrt{-bc} \right ){\frac{1}{\sqrt{-bc}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-bc}b+2\,A{c}^{2}x-2\,Bbcx \right ) \left ( c{x}^{4}+b{x}^{2} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(5/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x)

[Out]

1/2/(c*x^4+b*x^2)^(3/2)*x^(5/2)*(c*x^2+b)*(A*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/
2))/(-b*c)^(1/2))^(1/2)*(-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2
))*(-b*c)^(1/2)*c+B*((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*2^(1/2)*((-c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2)*(
-x*c/(-b*c)^(1/2))^(1/2)*EllipticF(((c*x+(-b*c)^(1/2))/(-b*c)^(1/2))^(1/2),1/2*2^(1/2))*(-b*c)^(1/2)*b+2*A*c^2
*x-2*B*b*c*x)/b/c^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} x^{\frac{5}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*x^2 + A)*x^(5/2)/(c*x^4 + b*x^2)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2}}{\left (B x^{2} + A\right )} \sqrt{x}}{c^{2} x^{6} + 2 \, b c x^{4} + b^{2} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2)*(B*x^2 + A)*sqrt(x)/(c^2*x^6 + 2*b*c*x^4 + b^2*x^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(5/2)*(B*x**2+A)/(c*x**4+b*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{2} + A\right )} x^{\frac{5}{2}}}{{\left (c x^{4} + b x^{2}\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(5/2)*(B*x^2+A)/(c*x^4+b*x^2)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^2 + A)*x^(5/2)/(c*x^4 + b*x^2)^(3/2), x)